Lower deviation probabilities for branching random walks
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Recall M; and U(t, x) = P(M; < x).

@ Kolmogorov, Petrovsky and Piskunov (1937): there exists a function m; s.t.

1
—W" V2 + w(w —1) = 0.

U(t, m 4+ x) == w(x), 5

Bramson (1978): m, = /2t — logt—l-O( ).

Bramson (1983): M, — (\ft log t) converge in law.
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@ Gantert and Hofelsauer (2018):
Large deviation P(M, > x*n — y*logn + x,), x, ~ cn.

@ Chen and He (2019): Lower deviation
P(M, < x*n—y*logn — {,),¢, = O(n).
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Bottcher case lll

o Assume P(|X| > 2) = 1 and ess inf ¢ = —L for some 0 < L < oc.

@ Then for £, 1 oo with 0 < limsup,_, b x* 4|,

n

logb

lim %log [—logP (M, < x*n—y*logn —{,)] =

n—0o0 L, x* 4L

@ Hu (2016) studied the case of £, = o(logn).
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Aidékon (2013, AOP): weak convergence.
P(M, < x*n —y*logn + x)

M,

M,
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Gantert and Hofelsauer (2018, ECP): large deviation
P(M, > x*n — y* logn+x,),x, < n
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Chen and He (20I9+ AIHP): Lower deviation

P(M, > x*n —y*logn—(,),(, = O(n). [, — +0

M,
m,=x"n-y* log n
m X, %,=0(n)
2
M,
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Thanks!
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