Lower deviation probabilities for branching random walks

何辉 (北京师范大学)

Joint work with Xinxin Chen (陈昕昕, Lyon I)

Content

- Branching Brownian motion
- Maximum
- Branching random walk
- Main results

Content

- Branching Brownian motion
- Maximum
- Branching random walk
- Main results

• Each particles moves as a BM independently.

- Each particles moves as a BM independently.
- It splits into two particle when life time (exp.) is ended.

- Each particles moves as a BM independently.
- It splits into two particle when life time (exp.) is ended.
- The offsprings perform the same behaviors (independenly).

- Each particles moves as a BM independently.
- It splits into two particle when life time (exp.) is ended.
- The offsprings perform the same behaviors (independenly).
- M_t: maximal position of BBM at time t.

• M_t : maximal position of BBM at time t.

• M_t : maximal position of BBM at time t.

•
$$U(t,x) = \mathbb{P}(M_t \leq x)$$
.

- M_t: maximal position of BBM at time t.
- $U(t,x) = \mathbb{P}(M_t \leq x)$.
- McKean (1976): U satisfies F-KPP equation.

$$\frac{\partial}{\partial t} \textbf{U}(\textbf{t}, \textbf{x}) = \frac{1}{2} \Delta \textbf{U}(\textbf{t}, \textbf{x}) + \textbf{U}^2 - \textbf{U}.$$

- M_t: maximal position of BBM at time t.
- $U(t,x) = \mathbb{P}(M_t \leq x)$.
- McKean (1976): U satisfies F-KPP equation.

$$\frac{\partial}{\partial t}U(t,x) = \frac{1}{2}\Delta U(t,x) + U^2 - U.$$

• Fisher (1937), Kolmogorov, Petrovsky and Piskunov (1937).

- M_t: maximal position of BBM at time t.
- $U(t,x) = \mathbb{P}(M_t \leq x)$.
- McKean (1976): U satisfies F-KPP equation.

$$\frac{\partial}{\partial t}U(t,x) = \frac{1}{2}\Delta U(t,x) + U^2 - U.$$

• Fisher (1937), Kolmogorov, Petrovsky and Piskunov (1937).

• Recall M_t and $U(t, x) = \mathbb{P}(M_t \leq x)$.

- Recall M_t and $U(t, x) = \mathbb{P}(M_t \leq x)$.
- Kolmogorov, Petrovsky and Piskunov (1937): there exists a function m_t s.t.

$$U(t, m_t + x) \stackrel{t \to \infty}{\longrightarrow} \omega(x), \quad \frac{1}{2}\omega'' + \sqrt{2}\omega' + \omega(\omega - 1) = 0.$$

- Recall M_t and $U(t, x) = \mathbb{P}(M_t \leq x)$.
- Kolmogorov, Petrovsky and Piskunov (1937): there exists a function m_t s.t.

$$\mathbf{U}(\mathbf{t}, \mathbf{m_t} + \mathbf{x}) \stackrel{\mathbf{t} \to \infty}{\longrightarrow} \omega(\mathbf{x}), \quad \frac{1}{2}\omega'' + \sqrt{2}\omega' + \omega(\omega - 1) = 0.$$

• Bramson (1978): $m_t = \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t + O(1)$.

- Recall M_t and $U(t, x) = \mathbb{P}(M_t \leq x)$.
- Kolmogorov, Petrovsky and Piskunov (1937): there exists a function m_t s.t.

$$U(t, m_t + x) \stackrel{t \to \infty}{\longrightarrow} \omega(x), \quad \frac{1}{2}\omega'' + \sqrt{2}\omega' + \omega(\omega - 1) = 0.$$

- Bramson (1978): $m_t = \sqrt{2}t \frac{3}{2\sqrt{2}}\log t + {\rm O}(1)$.
- Bramson (1983): $M_t (\sqrt{2}t \frac{3}{2\sqrt{2}}\log t)$ converge in law.

Content

- Branching Brownian motion
- Branching random walk
- Main results

Branching random walk

• Discrete counterpart of branching Brownian motion.

Branching random walk

- Discrete counterpart of branching Brownian motion.
- M_n =Maximum of BRW at time n.

Branching random walk

- Discrete counterpart of branching Brownian motion.
- M_n =Maximum of BRW at time n.

Maximum of BRW M_n

• 2D Gaussian Free Field; [Bramson, Ding and Zeitouni (2016)...]

- 2D Gaussian Free Field; [Bramson, Ding and Zeitouni (2016)...]
- Random Unitary Matrix; [Arguin, Belius and Bourgade (2017), Chhaibi, Najnudel and Madaule (2018)...]

- 2D Gaussian Free Field; [Bramson, Ding and Zeitouni (2016)...]
- Random Unitary Matrix; [Arguin, Belius and Bourgade (2017), Chhaibi, Najnudel and Madaule (2018)...]
- Randomized Riemann-Zeta function; [Arguin, Belius and Bourgade (2017), Najnudel (2017)...]

- 2D Gaussian Free Field; [Bramson, Ding and Zeitouni (2016)...]
- Random Unitary Matrix; [Arguin, Belius and Bourgade (2017), Chhaibi, Najnudel and Madaule (2018)...]
- Randomized Riemann-Zeta function; [Arguin, Belius and Bourgade (2017), Najnudel (2017)...]
- 2D cover times; Dembo, Peres, Rosen and Zeitouni (2004), Belius and Kistler (2017)...

- 2D Gaussian Free Field; [Bramson, Ding and Zeitouni (2016)...]
- Random Unitary Matrix; [Arguin, Belius and Bourgade (2017), Chhaibi, Najnudel and Madaule (2018)...]
- Randomized Riemann-Zeta function; [Arguin, Belius and Bourgade (2017), Najnudel (2017)...]
- 2D cover times; Dembo, Peres, Rosen and Zeitouni (2004), Belius and Kistler (2017)...

• Recall that M_n is the maximum of BRW at time n.

- Recall that M_n is the maximum of BRW at time n.
- Biggins (1967), Hammersley (1974), Kingman (1975):

$$\frac{M_n}{n} \xrightarrow{a.s.} x^*.$$

- Recall that M_n is the maximum of BRW at time n.
- Biggins (1967), Hammersley (1974), Kingman (1975):

$$\frac{M_n}{n} \xrightarrow{a.s.} x^*.$$

Addario-Berry and Reed (2009) and Hu and Shi (2009):

$$M_n = x^*n - y^* \log n + o_p(\log n).$$

- Recall that M_n is the maximum of BRW at time n.
- Biggins (1967), Hammersley (1974), Kingman (1975):

$$\frac{M_n}{n} \xrightarrow{a.s.} x^*.$$

Addario-Berry and Reed (2009) and Hu and Shi (2009):

$$M_n = x^*n - y^* \log n + o_p(\log n).$$

• Aïdékon (2013):

$$\mathbb{P}(M_n \leq x^*n - y^* \log n + x)$$
, converge.

Maximum of BRW: deviation probabilities

• Recall that Aïdékon (2013): $\mathbb{P}(M_n \le x^*n - y^* \log n + x)$ converge.

Maximum of BRW: deviation probabilities

- Recall that Aïdékon (2013): $\mathbb{P}(M_n \le x^*n y^* \log n + x)$ converge.
- Gantert and Höfelsauer (2018): Large deviation $\mathbb{P}(M_n \ge x^*n - y^* \log n + x_n), x_n \sim cn$.

Maximum of BRW: deviation probabilities

- Recall that Aïdékon (2013): $\mathbb{P}(M_n \le x^*n y^* \log n + x)$ converge.
- Gantert and Höfelsauer (2018): Large deviation $\mathbb{P}(M_n \ge x^*n - y^* \log n + x_n), x_n \sim cn$.
- Chen and He (2019): Lower deviation $\mathbb{P}(M_n \le x^*n y^* \log n \ell_n), \ell_n = O(n).$

Content

- Branching Brownian motion
- Branching random walk
- Main results

Böttcher case I

• X: offspring number; ξ : step size.

Böttcher case I

- X: offspring number; ξ : step size.
- Assume $\mathbb{P}(|\mathsf{X}| \geq 2) = 1$ and $\mathbb{P}(\xi > \mathsf{z}) \sim \mathsf{e}^{-\lambda \mathsf{z}^{\alpha}}(\alpha > 0)$ as $\mathsf{z} \to \infty$.

- X: offspring number; ξ : step size.
- Assume $\mathbb{P}(|\mathsf{X}| \geq 2) = 1$ and $\mathbb{P}(\xi > \mathsf{z}) \sim \mathsf{e}^{-\lambda \mathsf{z}^{\alpha}}(\alpha > 0)$ as $\mathsf{z} \to \infty$.
- $\bullet \ \ \mathsf{Define} \ b = \inf\{k \geq 2: \mathbb{P}(|\mathsf{X}| = k) > 0\}.$

- X: offspring number; ξ : step size.
- Assume $\mathbb{P}(|\mathsf{X}| \geq 2) = 1$ and $\mathbb{P}(\xi > \mathsf{z}) \sim \mathsf{e}^{-\lambda \mathsf{z}^{\alpha}}(\alpha > 0)$ as $\mathsf{z} \to \infty$.
- Define $b = \inf\{k \ge 2 : \mathbb{P}(|X| = k) > 0\}.$
- Then for $\ell_n = O(n)(\ell_n \le Cn)$, $\ell_n \to \infty$, we have

$$\lim_{n \to \infty} \frac{1}{\ell_n^{\,\alpha}} \ln P\left(M_n \le x^*n - y^* \log n - \ell_n\right) = \begin{cases} -\lambda \left(b^{\frac{1}{\alpha-1}} - 1\right)^{\alpha-1} & \alpha > 1 \\ b & \alpha \le 1 \end{cases}$$

- X: offspring number; ξ : step size.
- Assume $\mathbb{P}(|\mathsf{X}| \geq 2) = 1$ and $\mathbb{P}(\xi > \mathsf{z}) \sim \mathsf{e}^{-\lambda \mathsf{z}^{\alpha}}(\alpha > 0)$ as $\mathsf{z} \to \infty$.
- Define $b = \inf\{k \ge 2 : \mathbb{P}(|X| = k) > 0\}.$
- Then for $\ell_n = O(n)(\ell_n \le Cn)$, $\ell_n \to \infty$, we have

$$\lim_{n \to \infty} \frac{1}{\ell_n^{\,\alpha}} \ln P\left(M_n \le x^*n - y^* \log n - \ell_n\right) = \begin{cases} -\lambda \left(b^{\frac{1}{\alpha-1}} - 1\right)^{\alpha-1} & \alpha > 1 \\ b & \alpha \le 1 \end{cases}$$

 $\bullet \ \, \mathsf{Assume} \, \, \mathbb{P}(|\mathsf{X}| \geq 2) = 1 \, \mathsf{and} \, \, \mathbb{P}(\xi > \mathsf{z}) \sim \mathsf{e}^{-\mathsf{e}^{\mathsf{z}^{\alpha}}}(\alpha > 0) \, \mathsf{as} \, \mathsf{z} \to \infty.$

- Assume $\mathbb{P}(|\mathbf{X}| \geq 2) = 1$ and $\mathbb{P}(\xi > \mathbf{z}) \sim \mathrm{e}^{-\mathrm{e}^{\mathbf{z}^{\alpha}}}(\alpha > 0)$ as $\mathbf{z} \to \infty$.
- Recall $b = \inf\{k \ge 2 : P(|X| = k) > 0\}.$

- Assume $\mathbb{P}(|\mathbf{X}| \geq 2) = 1$ and $\mathbb{P}(\xi > \mathbf{z}) \sim e^{-e^{\mathbf{z}^{\alpha}}} (\alpha > 0)$ as $\mathbf{z} \to \infty$.
- Recall $b = \inf\{k > 2 : P(|X| = k) > 0\}.$
- Then for $\ell_n = O(n)$, $\ell_n \to \infty$, we have

$$\lim_{n\to\infty} \ell_n^{-\frac{\alpha}{\alpha+1}} \log \left[-\log \mathbb{P} \left(M_n \leq x^* n - y^* \log n - \ell_n \right) \right] = \left(\frac{1+\alpha}{\alpha} \log b \right)^{\frac{\alpha}{\alpha+1}}.$$

- Assume $\mathbb{P}(|\mathbf{X}| \geq 2) = 1$ and $\mathbb{P}(\xi > \mathbf{z}) \sim e^{-e^{\mathbf{z}^{\alpha}}} (\alpha > 0)$ as $\mathbf{z} \to \infty$.
- Recall $b = \inf\{k > 2 : P(|X| = k) > 0\}.$
- Then for $\ell_n = O(n)$, $\ell_n \to \infty$, we have

$$\lim_{n\to\infty} \ell_n^{-\frac{\alpha}{\alpha+1}} \log \left[-\log \mathbb{P} \left(M_n \leq x^* n - y^* \log n - \ell_n \right) \right] = \left(\frac{1+\alpha}{\alpha} \log b \right)^{\frac{\alpha}{\alpha+1}}.$$

• Assume $\mathbb{P}(|\mathbf{X}| \geq 2) = 1$ and ess inf $\xi = -\mathbf{L}$ for some $0 < \mathbf{L} < \infty$.

- Assume $\mathbb{P}(|\mathbf{X}| \geq 2) = 1$ and ess inf $\xi = -L$ for some $0 < L < \infty$.
- Then for $\ell_n \uparrow \infty$ with $0 \leq \limsup_{n \to \infty} \frac{\ell_n}{n} < \mathbf{x}^* + \mathbf{L}$,

$$\lim_{n\to\infty}\frac{1}{\ell_n}\log\left[-\log\mathbb{P}\left(M_n\leq x^*n-y^*\log n-\ell_n\right)\right]=\frac{\log b}{x^*+L}.$$

- Assume $\mathbb{P}(|\mathbf{X}| \geq 2) = 1$ and ess inf $\xi = -L$ for some $0 < L < \infty$.
- Then for $\ell_n \uparrow \infty$ with $0 \leq \limsup_{n \to \infty} \frac{\ell_n}{n} < \mathbf{x}^* + \mathbf{L}$,

$$\lim_{n\to\infty}\frac{1}{\ell_n}\log\left[-\log\mathbb{P}\left(M_n\leq x^*n-y^*\log n-\ell_n\right)\right]=\frac{\log b}{x^*+L}.$$

• Hu (2016) studied the case of $\ell_n = o(\log n)$.

Schröder case

• Assume P(|X| = 1) > 0, P(|X| = 0) = 0.

Schröder case

- Assume P(|X| = 1) > 0, P(|X| = 0) = 0.
- Then for any positive sequence (ℓ_n) such that $\ell_n \uparrow \infty$ and that $\ell^* := \lim_{n \to \infty} \frac{\ell_n}{n}$ exists with $\ell^* \in [0, \infty)$, we have

$$\lim_{n\to\infty}\frac{1}{\ell_n}\log\mathbb{P}(M_n\leq x^*n-y^*\log n-\ell_n)=H(x^*,\gamma),$$

where $\gamma = \mathbb{P}(|\mathsf{X}_1| = 1)$ and

$$H(x^*, \gamma) = \sup_{a \ge \ell^*} \frac{\gamma - I(x^* - a)}{a}.$$

Schröder case

- Assume P(|X| = 1) > 0, P(|X| = 0) = 0.
- Then for any positive sequence (ℓ_n) such that $\ell_n \uparrow \infty$ and that $\ell^* := \lim_{n \to \infty} \frac{\ell_n}{n}$ exists with $\ell^* \in [0, \infty)$, we have

$$\lim_{n\to\infty}\frac{1}{\ell_n}\log\mathbb{P}(M_n\leq x^*n-y^*\log n-\ell_n)=H(x^*,\gamma),$$

where $\gamma = \mathbb{P}(|\mathsf{X}_1| = 1)$ and

$$H(x^*, \gamma) = \sup_{a \ge \ell^*} \frac{\gamma - I(x^* - a)}{a}.$$

Aïdékon (2013, AOP): weak convergence.

$$\mathbb{P}(M_n \leq x^*n - y^* \log n + x)$$

Gantert and Höfelsauer (2018, ECP): large deviation

 $\mathbb{P}(M_n \geq x^*n - y^* \log n {+} x_n), x_n \asymp n$

Chen and He (2019+, AIHP): Lower deviation

 $\mathbb{P}(M_n \geq x^*n - y^* \log n - \ell_n), \ell_n = O(n), \ell_n \to +\infty$

Thanks!